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LETTER TO THE EDITOR 

Phase transition in a gauge model on a tree-like lattice 
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School for Advanced Studies (SISSA), Trieste, Italy 
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Abstract. A new model which represents the gauge analogue of a spin system on a Cayley 
tree is proposed. The case of Z(2) symmetry is considered explicitly. The free energy 
exhibits singular behaviour at low temperatures as a function of a suitable symmetry 
breaking coupling. The Wegner-Wilson loop correlation function is shown to have an 
area and a perimeter type of decay in the high- and low-temperature phases respectively. 

A possible Bethe-like approximation for the transition coupling of gauge systems is 
also proposed in connection with the model. 

Lattice gauge models are important in different physical contexts. The study of phase 
transitions in non-Abelian theories is essential for the explanation of quark 
confinement and asymptotic freedom in hadron dynamics (Wilson 1974, Kogut 1979). 
On the other hand, Z(2) lattice gauge theory is relevant in condensed matter problems 
involving random interactions and frustration (Toulouse 1977). 

In the present letter we propose and solve a model on a lattice, which can be 
considered as the gauge analogue of a Cayley tree (or Bethe lattice) in the case of 
spin systems (Domb 1960). 

For many problems the solution on a tree is much simpler than on regular lattices. 
The behaviour of systems on trees, however, is not trivial, and is somehow related 
to the self-consistent Bethe-Peierls approximation (Eggarter 1974). Thus models on 
tree lattices also give ‘classical’ or ‘mean-field’ information on more realistic problems. 
This feature is particularly interesting in all cases for which the application of standard 
molecular field ideas is questionable. Gauge theories are certainly among these cases 
(Elitzur 1975, Pearson 1981). 

The most relevant properties of Ising spin systems on Bethe lattices have been 
clarified and determined by Eggarter (1974) and by Muller-Hartmann and Zittartz 
(1974). More recently the work of these authors has been extended to spin systems 
with other global Abelian symmetries, like Potts, Z ( N )  or planar rotator models 
(Moraal 1981). A common property of these models is the existence of a high- and 
a low-temperature phase, separated by the Bethe-Peierls critical temperature (Bethe 
1935, Domb 1960). In the low-temperature phase, the free energy exhibits singular 
behaviour in its external field dependence at zero field (Muller-Hartmann and Zittartz 
1974). 

Our lattice is made up of planar strips of square plaquettes, the strips having in 
common each longitudinal side (except those at the boundary) with other b(b = 
2 ,3 , .  . .) strips. In figure 1 a schematic drawing of the lattice is given for the case 
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Figure 1. Our lattice for the case b = 2. The heavy longitudinal row supports the extrema 
of the C paths of equation (4). One of these paths is given in the figure (dotted lines). 
A ‘rectangular’ closed path is also drawn in the figure (heavy lines). 

b = 2. The important topological feature of this lattice is that there is only one surface 
of plaquettes having a given closed path of bonds as the boundary. Of course, in the 
case b = 1 we obtain the two-dimensional square lattice. 

We choose to work with Z(2) gauge theory for simplicity; the results we obtain 
below can be generalised without major difficulties to other discrete or continuous 
symmetries, as will be reported elsewhere. 

Denoting by uii( = *l) the variable associated with the nearest-neighbour bond 
(ij), the reduced Hamiltonian (action) of our system can be written as 

where p = l / k B T ,  and the sum is extended to all sets of vertices of elementary oriented 
plaquettes. The Hamiltonian (1) is invariant under gauge transformations of the form 

(2) 

where ye  at site 1, takes the values *la 
Let us consider a finite lattice of the type illustrated in figure 1, with open boundary 

conditions. If we choose an arbitrary longitudinal row of bonds (heavy line in figure 
1) in the lattice, it is immediate to verify that the partition function 2 satisfies 

U , .  +(T!. = y.(T..  - 1  
I! 11 1 IIY i 

2 = Tr(,) = Tr(,) Trim) e-px(m) n 2 - l ( 1  + y p i j y ; l )  (3) 
(ii)transv. 

where the product runs over all bonds, which are not parallel to the given row 
(transverse); the y’s on the sites of the row itself are fixed equal to +1, and there is 
no summation on themt. Equation (3) and the gauge invariance of the Hamiltonian 
imply that up to an inessential numerical factor (=Tr(,)l), the partition function 
factorises into the product of M partition functions for independent spin systems on 
Cayley trees, M being the number of bonds on a longitudinal row. Indeed, for each 
configuration { y }  in (3), one can induce a corresponding gauge transformation ( 2 ) ,  
leading to a system where all the transverse U ’ S  are fixed to be +1. In this way only 

t This last restriction will be necessary in the following discussion, when we also consider symmetry breaking 
interactions. 
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the longitudinal U ’ S  fluctuate and interact with bilinear, spin-spin-like interactions of 
strength K,  between bonds on the same plaquette. Up to a constant the free energy 
per bond of our system in the thermodynamic limit (M + 00 and all transverse branches 
extend to infinity with respect to a given longitudinal line) is equal to of the free 
energy per site of a spin model on a Cayley tree; the latter free energy is known to 
be analytic in K,  for all K, at zero external field h. For such spin systems, only the 
derivatives of the free energy with respect to an external magnetic field become 
singular below the Bethe-Peierls critical temperature (KBP = tanh-’( 1/6) for the Ising 
case) (Eggarter 1974, Muller-Hartmann and Zittartz 1974); the field singularities are 
accompanied by spontaneous symmetry breaking in the ‘interior’ of the system?. This 
symmetry breaking means that, for K >KBP, limhtOt limNv,m ( u ~ ) ~  # 0, where u0 is in 
the interior and N is its minimal distance from the boundary. 

In order to see any singular behaviour in our gauge model, we must first add to 
(1) a symmetry breaking interaction, which possibly induces an effect analogous to 
that of the magnetic field in the case of the spin tree. For this purpose we choose to 
introduce an interaction which is not gauge invariant and has the form 

where C indicates any possible connected open path starting and ending at the two 
extrema of a bond belonging to an arbitrarily chosen longitudinal row. Each path 
C contains only one longitudinal bond, and thus has a strip-like rectangular shape. 
C coincides with the longitudinal bond when this belongs to the chosen row in the 
lattice, A path of this type is drawn in figure 1. By choosing the particular longitudinal 
row in equation (3) coincident with the row where all C paths start and end, it is easy 
to verify that the partition function of our gauge model, with the interaction (4) added 
to (l), factorises into the product of M partition functions for Cayley spin trees in an 
external field h. So, in this case, the free energy per bond is (up to a constant and a 
factor 5) that of a Cayley spin tree with NN interaction K in an external field h. 

The singularities in h of the free energy of this spin model have been already 
computed and turn out to correspond to a transition of an order varying continuously 
between first and infinite order for a range of K between CO and KBp (Muller-Hartmann 
and Zittartz 1974). In the present work we perform a calculation of the spin-spin 
correlation function; as we will see, this calculation allows us to discuss the behaviour 
of the Wegner-Wilson loop correlation function for the gauge model. This is a 
gauge-invariant correlation function, Wr = (IIciiIEr uii) with r being a closed loop, 
whose behaviour for large r should characterise the possible different phases of the 
system (Wegner 1971, Wilson 1974). 

Using equations (3) and (2) it is easy to verify, for example, that for a ‘rectangular’ 
r of lengths m and n, in the longitudinal and transverse directions respectively, (see 
figure 1) 

Wr =  bo^^ >“ ( 5 )  

where (uOun) is the correlation function of two interior spins, at distance n on a spin 
tree, in the thermodynamic limit. As we show below, the calculation of (uO~n) can 
be performed by making reference to the iterative method already used for computing 
the free energy and the core magnetisation of such spin systems (Eggarter 1974, 
t A point is in the interior if, in the thermodynamic limit, all paths connecting it to boundary spins become 
infinite. 



L160 Letter to the Editor 

Muller-Hartmann and Zittartz 1974). Other techniques for calculation of (gag,) are 
not able to give the correlation in the presence of an external field. For example, the 
results of Wang and Wu (1976) for the Potts model are appropriate only for h strictly 
equal to zero without any symmetry breaking effects. In the iterative method one 
considers the effective field x N  felt by the top spin of an N-generation branch of the 
system?, and finds a recursion giving xN+1 in terms of xN.  For our Ising spin trees 
one simply gets (Muller-Hartmann and Zittartz 1974) 

(6) 

At h = O  and for K CKBp, equation (6) has only a stable fixed point x * = O ,  which 
becomes marginal for K = KBp. For h = 0 and K > KBP, x *  = 0 becomes unstable, 
and two symmetric attractive fixed points x *  = *h,(K) f 0 appear. The appearance 
of these last fixed points is the mechanism explaining the previously mentioned 
spontaneous symmetry breaking in the interior of the system. If K > KBp, performing 
the thermodynamic limit (N + CO) with h > 0, and then letting h + 0, will leave an 
effective non-zero field acting on each spin in the interior. This field is equal to 
tanh-'(tanh K tanh h,) + h ,  because a spin in the interior can be seen as the top of 
an infinite-generation branch, interacting via K with the top spin of another infinite- 
generation branch. The internal spontaneous magnetisation is thus non-zero for 
K > KBp, and is given by 

xN+1= h + b In [(exp(2xN) + exp(-2K))/(exp(2xN - 2K)  + l)]. 

tanh h,( 1 + tanh K)  
1 + tanh K tanh2 h, 

(u0)= lim lim (U& = =mo>O. 
h+O+ N+co 

(7) 

The calculation of (u~u,) on the spin Cayley tree can be performed by considering the 
path connecting v0 with U,. As one can argue from the drawing in figure 2, in the 
thermodynamic limit the intermediate spins along the path, UI,  UZ, . . . and ~ " - 1 ,  for 
K > K B p  feel a non-zero effective field, even after letting h + O+. This field comes from 
the interaction with the top spin of an infinite-generation branch, and is equal to 
tanh-' (tanh K tanh h,). At the same time, the extremal spins r0 and U, are the top 
spins of infinite-generation branches and feel a field h, for h + O+. Thus the problem 
of obtaining (moa,) in the thermodynamic limit is reduced to that of computing the 
correlation between the extremal spins of a one-dimensional Ising chain of length n 

I 

Figure 2. Schematic representation of the path connecting sites 0 and n in the Bethe 
lattice (with b = 2). 

+ This is defined as an initial (top) site, connected with b (A' - 1)-generation branches; the one-generation 
branch is a single site. 
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with suitable external fields. This can be done easily by the transfer matrix method 
(Schultz et a1 1964). So, for K <KBP and h = 0, (croa,,) = (tanh K)“; on the other 
hand, for K>KBP, if h approaches zero in the infinite system, we get a different 
correlation, which does not tend to zero as n + CO; in this limit the correlation factorises 
into the square of (7), as one can verify after some tedious algebra. In view of equation 
( 5 ) ,  these results immediately determine Wr and its behaviour for large r. In the 
high-temperature region (K < KBp) the absence of spontaneous symmetry breaking 
in the interior of the spin trees implies 

wr exp(-lln tanh Klmn)  (8) 
m,n-m 

which is the area decay law expected in gauge systems at high temperature (Wegner 
1971, Wilson 1974). 

For low temperatures (K >KBP) if we let our symmetry breaking interaction (4) 
go to zero, we find the behaviour 

Wr = exp(-llnmo12m) 
m,n-m 

with mo given by equation (7). This is not exactly the perimeter type of decay expected 
in the low-temperature phase of a gauge system with phase transition (Wegner 1971, 
Wilson 1974); it is, indeed, even slower than a perimeter decay, for which the exponent 
should be proportional to 2(m +n). The anisotropic character of equation (9) is of 
course connected with the peculiar topology of our system, in which longitudinal and 
transverse directions play radically different roles, as far as the mechanism leading to 
(9) is concerned. Our method of calculation of Wr is very general and applies to 
every conceivable closed r in the interior of the lattice. 

At this point a remark concerning the possibility of local symmetry breaking in 
our gauge system is in order. When we add the interaction (4) to equation (l), we 
can show that, according to Elitzur’s theorem (Elitzur 1975), one must have 
limb-0 (crij) = 0 for all the bonds in our system which do not belong to the particular 
longitudinal row supporting the extrema of the open paths C of (4). For these last 
bonds the structure of equation (4), however, does not,exclude the possibility of local 
symmetry breaking, that is one can have limh+o* (crij) f 0. Actual calculation of (aij) 
for these bonds leads to the result that local symmetry breaking takes place, for 
K >ICBP, only if the longitudinal row is chosen in the interior of the system, that is, 
if it stays infinitely far from the boundaries in the thermodynamic limit. On the 
contrary, if we choose this row right on the boundary for example, no local spontaneous 
symmetry breaking occurs. This result is connected with the fact that, in a spin tree, 
spontaneous magnetisation develops only in the core (Eggarter 1974). 

In conclusion we have proposed a gauge model which can be solved exactly and, 
like spin models on Cayley trees, has a phase transition; this transition is detectable 
in the dependence of the free energy on the coupling h of the symmetry breaking 
interaction (4). In the high-temperature region the asymptotic behaviour (8) of Wr 
indicates a ‘confining’ phase (Wilson 1974). The asymptotic behaviour (9), on the 
other hand, shows the ‘deconfining’ character of the low-temperature phase. 

As for spin trees, the interest of this model is primarily due to its solvability, 
combined with the presence of non-trivial behaviour; these qualities should be most 
appreciated in the context of gauge theories, where exact solutions of more realistic 
models do not exist. 
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We finally come to the above mentioned connection between systems on trees and 
classical approximations. 

The critical temperature of a spin system on a Bethe lattice with coordination 
number b + 1 is the same (Eggarter 1974) as the one given by the Bethe-Peierls 
approximation (Bethe 1935, Domb 1960) for a hypercubic lattice in d = i (b  + 1) 
dimensions. For gauge models Bethe-like approximations have not yet been proposed. 
The results of our model, however, allow us to guess, by analogy, what could be the 
result for the critical coupling of such a type of classical approximation in the gauge 
case. Each bond in a hypercubic lattice belongs to 2(d - 1) plaquettes; in our model, 
on the other hand, a longitudinal bond belongs to (b + 1) plaquettes, thus the approxi- 
mate Bethe-Peierls like critical coupling should be 

KBP = tanh-'(2d - 3)-' 

which correctly goes to infinity for d + 2, since we know that the two-dimensional 
model has no phase transition at finite temperature (Kogut 1979). 

When obtaining equation ( lo) ,  we did not consider the coordination of transverse 
bonds in our system. At first sight this could appear somewhat arbitrary. There is, 
however, a convincing argument in favour of our choice. Indeed, for Z ( 2 )  (and in 
general Abelian) gauge theory on a d-dimensional hypercubic lattice, the following 
inequality has been proved (Brydges er a1 1979): 

where r is again a rectangular m x n loop, and (uor,) is a correlation in the (d - 
1)-dimensional spin system. Thus for our model an analogous type of inequality (see 
equation (5)) is satisfied as an equality. In our case the reduction of dimensionality 
is due to the disappearance of the longitudinal lattice direction when passing from 
the gauge to the spin tree. Coming back to equation (lo),  which is based on the 
position (6+1) = 2(d - l ) ,  we notice that this is the only choice leading to a difference 
of 1 between the d for the gauge model and the d for the spin model. The latter 
one, indeed, is obtained from (b  + 1) = 2d, our gauge and spin trees having the same 
b. 
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